当医学影像遇到AI大模型
一年之前利拉德刚来到密尔沃基的时候,雄鹿被视为总冠军的最大竞争者。然而一年后,在争冠球队的讨论里,你已经很少能见到雄鹿的名字。 作为一支连续两年止步季后赛首轮的球队,这样的待遇似乎合情合理....
在医疗这种专业领域里,其实是最适合AI大模型发挥的地方。这篇文章,作者就从医学影像领域,从如何赋能、如何 和如何商业化三个维度进行初探,供大家参考。
自去年11月30日美国AI公司OpenAI发布旗下基于大语言模型GPT-3.5的AI聊天机器人程序Ch GPT以来,引发全球大模型开发和商业化应用浪潮。同样这股浪潮也深刻影响着医疗行业,根据《2023医疗健康AI大模型行业研究报告》数据显示,截至2023年10月,国内累计公开的医疗大模型近50个,涉及患者问诊、医生助手、 研发、健康科普等多个领域。
当医学影像遇到AI大模型又会擦出什么火花,笔者将从如何赋能、如何 和如何商业化三个维度进行初探。
从2023年开始业内发布多个医学影像类AI大模型,包括:
医疗大模型作为一种工具,场景是其发展的关键,目前已在预问诊、病历书写等高频场景,以及科研场景下广泛应用。
目前关于人工智能软件的审评审评标准主要参考《人工智能医疗器械注册 指导原则》、《深度学习辅助决策医疗器械软件审评要点》、《人工智能辅助检测医疗器械(软件)临床评价注册 指导原则》等,现有的审评审批文件中并未涉及大模型相关产品的审批要点,因此在审评审批环节还需要 机构与行业一起探索前行。
从价值角度分析,AI大模型更多的是对既有系统的提质增效,而不是替换,因此不会马上产生全新的应用形态,而是让既有的产品变成一个被广泛接受的、适用度大得多的产品。
再者医院是一个相对封闭的系统, 了多个厂商的设备或系统,虽然采用标准的接口或协议进行互联互通,但是实现接入还是困难重重,不是简单的从市场上买个标准件替换即可,而是涉及复杂的商务问题,想想几年前医学影像AI厂商初次进行医院时的艰难情形。因此通过与医疗信息化企业或者医疗设备厂商合作将大模型产品在医院进行落地是相对可行的商业化模式。
大模型很好,但不是“万能药“,需要理性看待。就像2012年提出深度学习后引发人工智能热潮,AI将替代医生的声音叫嚣甚喧,可10多年过去了,深度学习技术在医学影像领域的应用还是局限在辅助检测、辅助分诊等领域。至于辅助诊断方面,国内 个肺结节CT图像辅助诊断软件也才由深睿医疗在今年9月刚刚获批。
AI大势所趋,道路阻且长。
本文由 @毛利辉 原创发布于人人都是产品经理。未经作者许可,禁止转载
题图来自Unsplash,基于CC0协议
该文观点仅代表作者本人,人人都是产品经理 仅提供信息存储空间服务